一、平行四边形包含长方形吗?
平行四边形包含长方形,长方形即是平行四边形;
从平行四边形的概念上看,正方形和长方形就符合它的条件;平行四边形在三年级上册教学中还没有出现平行的概念,而是通过有长方形对角一拉形成了平行四边形,跟长方形比较时就是角的区别,在讲解时让学生明白它们之间的关系:长方形是特殊的平行四边形;
定义:两组对边分别平行的四边形叫做平行四边形。平行四边形属于平面图形;平行四边形属于四边形;平行四边形属于中心对称图形。平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合终形。平行四边形一般用图形名称加四个顶点依次命名。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
二、平行四边形是不是长方形?
平行四边形不一定是长方形,但长方形一定是平行四边形,即平行四边形包括长方形。
平行四边形的判定方法如下:
1、两组对边分别平行的四边形是平行四边形(定义判定法)。
2、一组对边平行且相等的四边形是平行四边形。
3、对角线互相平分的四边形是平行四边形。
4、两组对角分别相等的四边形是平行四边形。
5、所有邻角(每一组邻角)都互补的四边形是平行四边形。
定义:
两组对边分别平行的四边形叫做平行四边形。
1、平行四边形属于平面图形。
2、平行四边形属于四边形。
3、平行四边形属于中心对称图形。
三、平行四边形的定义是什么?
平行四边形的定义:“两组对边分别平行的四边形称为平行四边形”。
平行四边形一般用图形名称加依次四个顶点名称来表示,如图平行四边形记为平行四边形ABCD。另外,平行四边形的两对角线互相平分“但不一定互相垂直,也不一定相等”。对角线互相垂直的平行四边形是菱形。
平行四边形并不是梯形。但长方形、正方形、菱形是平行四边形的一种。
扩展资料:
平行四边形的性质:
1、两组对边平行且相等、两组对角大小相等。
2、相邻的两个角互补、对角线互相平分,且将平行四边形面积分为四等分、对于平面上任意一点,都存在一条能将任意平行四边形平分为两个面积相等图形、并穿过该点的线。
3、四边边长的平方和等于两条对角线的平方和。
平行四边形的判定:
1、两组对边分别相等的平面四边形是平行四边形、两组对角分别相等的平面四边形是平行四边形。
2、两组邻角分别互补的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形。
3、两组对边分别平行的四边形是平行四边形、对角线相交且互相平分的四边形是平行四边形。
平行四边形的计算:
1、平行四边形的面积公式:底×高,如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。
2、平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=a*b*sinα。
3、平行四边形周长,四边之和。可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2*(a+b)。
参考资料来源:百度百科-平行四边形