一、简述假设检验的步骤
假设检验的一般步骤
假设检验的一般步骤:
(一)根据所研究问题的要求,提出原假设 和备择假设 。
有三种类型的原假设和备择假设,以总体均值的假设检验为例加以说明。
1. : ; :
2. : ; :
3. : ; :
其中,1. 是双侧假设检验;2. 是右侧假设检验;3. 是左侧假设检验。因为假设检验是根据概率意义下的反证法来否定原假设,所以原假设必须包含等号。究竟采用哪一种检验要视具体问题而定,尤其是选择右侧检验还是左侧检验时,更要慎重。
(二)找出检验的统计量及其分布。
与参数估计一样,假设检验也要根据样本数据进行统计推断。用于判断是否接受原假设 的统计量称为检验统计量。在实际应用时,检验统计量的选择及其分布要根据检验的具体内容、抽样的方式、样本容量的大小和总体方差是否已知等多种因素来确定,常用的检验统计量有 统计量、 统计量、 统计量及 统计量等。
(三)规定显著性水平 ,就是选择发生第一类错误的最大允许概率。
显著性水平 的大小,取决于发生第一类错误和第二类错误产生的后果。如果 取的较小,那么 将会较大,虽然否定一个真实原假设(弃真)的风险小了,其代价是增加了接受一个不真实原假设(取伪)的概率;反之,如果 取的较大,那么 将会较小,虽然接受一个不真实原假设(取伪)的的风险小了,其代价是增加了否定一个真实原假设(弃真)的概率。因此,要根据研究问题的需要选择一个合适的 ,通常 选为 、 或 等。
(四)确定决策规则。
在选择好检验统计量和规定了显著性水平后,就可以根据
求出否定原假设和接受原假设的临界值,从而也就确定了否定域 。
(五)计算检验统计量的值,作出统计决策。
如果检验统计量的值落在否定域 里,则否定 ;否则,不否定 。
需要说明的是,显著性检验只对发生第一类错误的概率进行了控制,而不对发生第二类错误的概率加以限制。因此,当我们决定接受 时,并不意味着 一定为真,因为我们不能确定该决策有多大的可靠性。确切的说法是:在显著性水平为 时,根据这次试验得到的样本数据,不足以否定 。鉴于发生第二类错误的不确定性,通常在做决策时,统计学家建议我们采用“不否定 或不拒绝 ”的说法,而不采用“接受 ” 的说法。但是,要否定 ,只要一个反例就足够了。否定了 ,也就避免了第二类错误,所以根据样本数据,作出否定 的决策就具有了可靠性。
二、统计学中假设检验的基本步骤有哪些
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;
如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
扩展资料
注意事项
要进行统计假设的检验, 必须利用各种不同的判据, 即利用规则来选择。假设的采用与拒绝, 通常在判据的前件中应有某个数量指标(称为统计判据)。
根据判据方式, 假设分为参数假设和非参数假设。按照参数统计结论, 通常应提出被研究特征在总体中分布的具体形式, 因为在这种情况下, 统计学通常是以分布参数(平均值、方差、回归系数)的利用为依据的。非参数判据的优点是能把判据用于只靠名义级或次序级完成的特征度量上。
否定零假设的判据值总体能构成否定域。如果某一点能将否定域与接受零假设的区域划分开来, 这一点就称为临界点。
参考资料来源:百度百科-假设检验
参考资料来源:百度百科-统计假设检验
三、假设检验的五个基本步骤
假设检验一般分为五个步骤:
①建立假设:包括:H0,称无效假设;H1:称备择假设;
②.确定检验水准:检验水准用α表示,α一般取0.05;
③.计算检验统计量:根据不同的检验方法,使用特定的公式计算;
④确定P值:通过统计量及相应的界值表来确定P值;
⑤推断结论:如P>α,则接受H0,差别无统计学意义;如P≤α,则拒绝H0,差别有统计学意义。
四、假设检验分为几个步骤
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等 。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,故在统计上成立。
扩展资料
假设检验中的常见错误:
1、第一类错误:也称为 α错误,是指当虚无假设(H0)正确时,而拒绝H0所犯的错误。这意味着研究者的结论并不正确,即观察到了实际上并不存在的处理效应。
2、第二类错误:也称为β错误,是指虚无假设错误时,反而接受虚无假设的情况,即没有观察到存在的处理效应。
参考资料来源:百度百科-假设检验