一、0的阶乘是多少

0的阶乘的结果是1,用正整数阶乘的定义是无法推广或推导出0!=1的即在连乘意义下无法解释“0!=1”。给“0!”下定义只是为了相关公式的表述及运算更方便。

一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。

扩展资料

通常我们所说的阶乘是定义在自然数范围里的(大多科学计算器只能计算 0~69 的阶乘),小数科学计算器没有阶乘功能,如 0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma 函数定义为非整数的阶乘,因为当 x 是正整数 n 的时候,Gamma 函数的值是 n-1 的阶乘。

真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!

参考资料:百度百科词条——阶乘

二、1~10的阶乘(!)分别是多少?

1~10的阶乘的结果如下:

1!=1

2!=2*1=2

3!=3*2*1=6

4!=4*3*2*1=24

5!=5*4*3*2*1=120

6!=6*5*4*3*2*1=720

7!=7*6*5*4*3*2*1=5040

8!=8*7*6*5*4*3*2*1=40320

9!=9*8*7*6*5*4*3*2*1=362880

10!=10*9*8*7*6*5*4*3*2*1=3628800

扩展资料:

1、阶乘是数学术语,是由基斯顿·卡曼于 1808 年发明的运算符号。

一个正整数的阶乘等于所有小于及等于该数的正整数的乘积,并且0的阶乘为1。自然数n的阶乘写作n!。

2、阶乘计算的公式

(1)n的阶乘用公式表示为:n!=1*2*3*......*(n-1)*n,其中n≥1。

(2)当n=0时,n!=0!=1

参考资料来源:百度百科-阶乘