如何求导 有哪些求导公式?

1、求函数y=f(x)在x0处导数的步骤:求函数的增量Δy=f(x0+Δx)-f(x0);求平均变化率;取极限,得导数

2、常见的求导公式有: C'=0(C为常数); (x^n)'=nx^(n-1) (n∈Q); (sinx)'=cosx; (cosx)'=-sinx;(e^x)'=e^x;(a^x)'=a^xIna (ln为自然对数;loga(x)'=(1/x)loga(e)

如何求导数,求导的公式是什么?

以下是18个基本导数公式(y:原函数;y':导函数):

1、y=c,y=0(c为常数)

2、y=xxμ,y'=μxμ负1(μ为常数且μ不等于0)。

3。y=aAx,y'=aAxIna。y=eAx,y'=eAx。

4、y=logax,y'=1/(xina)(a>0且a=1);y=Inx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=负sinx。

7、y=tanx,y'=(secx)2=1/(cosx)2。

8、y=cotx,y'=负(cscx)2=负1/(sinx)2。

9、y=arcsinx,y'=1/√(1负x2)。

10、y=arccosx,y'=负1/√(1负x2)。

11、y=arctanx,y'=1/(1+x2)。

12、y=arccotx,y'=负1/(1+2)。

13、y=shx,y'=chx。

14、y=chx,y'=shx。

15、y=thx,y'=1/(chx)2。

16、y=arshx,y'=1/V(1+x12)。

17、y=c(c为常数)y'=0

18、y=xny'=nxx(n负1)。

如何求导

求导的方法 :

(1)求函数y=f(x)在x0处导数的步骤:

① 求函数的增量Δy=f(x0+Δx)-f(x0)

② 求平均变化率

③ 取极限,得导数。

(2)几种常见函数的导数公式:

① C'=0(C为常数);

② (x^n)'=nx^(n-1) (n∈Q);

③ (sinx)'=cosx;

④ (cosx)'=-sinx;

⑤ (e^x)'=e^x;

⑥ (a^x)'=a^xIna (ln为自然对数)

⑦ loga(x)'=(1/x)loga(e)

(3)导数的四则运算法则:

①(u±v)'=u'±v'

②(uv)'=u'v+uv'

③(u/v)'=(u'v-uv')/ v^2

④[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])

(4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。

扩展资料:

求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

数学中的名词,即对函数进行求导,用  表示。

反函数求导法则:

若函数  严格单调且可导,则其反函数  的导数存在且  。

复合函数求导法则:

若  在点x可导  在相应的点u也可导,则其复合函数  在点x可导且  。

隐函数求导法则:

若  中存在隐函数  ,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即  ,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。

参考资料:百度百科——求导