虚轴是什么?图是怎样的?
实轴虚轴是复数域里的概念,复数z=x+iy,x称为实部,y称为虚部,然后由坐标(x,y)构成的点组成了整个复数域,在坐标平面内,x轴称为实轴,y轴称为虚轴
如下图所示:线段A1A2叫双曲线的实轴,线段B1B2叫双曲线的虚轴。
扩展资料
建立了直角坐标系来表示复数的平面,x轴叫做实轴,y轴除去原点的部分叫做虚轴,原点表示实数0,原点不在虚轴上。复平面内的每一个点,有唯一的一个复数和它对应,反过来,每一个复数,有复平面内唯一的一个点和它对应,所以复数集C和复平面内所有的点所成的集合是一一对应的。
复数平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。
如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数.“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念,认为这是真实不存在的数字,后来发现,虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实,虚数轴和实数轴构成的平面称复数平面,复平面上每一点对应着一个复数。
在复平面内哪个轴是实轴?哪个轴是虚轴?
x轴是实轴,y轴是虚轴。
数学中,复数平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。
复数平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。
建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部分叫做虚轴,原点表示实数0,原点不在虚轴上。复平面内的每一个点,有唯一的一个复数和它对应,反过来,每一个复数,有复平面内唯一的一个点和它对应,所以复数集C和复平面内所有的点所成的集合是一一对应的。
复数Z=a+bi和实数对(a,b)一样可以和坐标平面上的一点建立一一对应关系,这样与全体复数建立了一一对应关系的坐标平面叫做复数平面,简称复平面(Complex plane),又叫高斯平面。
复数实轴和虚轴是什么
双曲线与坐标轴两交点,的连线段AB叫做实轴。
双曲线与坐标轴两交点的连线段AB叫做实轴。实轴的长度为2a(a为标准方程中的参数)。而虚轴长没什么实际意义,往往和实轴一起用来讨论渐进线,它的一半就是所谓的表达式中的b。
实轴和虚轴是复数域里的概念,复数z=x+iyx称为实部,y称为虚部,然后由坐标(xy)构成的点组成了整个复数域,在坐标平面内,x轴称为实轴y轴称为虚轴。
双曲线的实轴和虚轴分别指什么
1、实轴:分为双曲线中的实轴及复数平面中的实轴两类,双曲线中,双曲线与坐标轴两交点的连线段叫做实轴;
2、复数域中,复数域与横轴上的点一一对应,把横轴称为实轴;
3、虚轴:一个直角坐标系,纵轴表示纯虚数,为虚轴;
4、作出双曲线的实虚轴可方便作出渐近线,继而作出双曲线的图线;
5、当实虚轴长相等时,这样的双曲线叫等轴双曲线,且两渐近线互相垂直;
6、若以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,互为共轭双曲线的两双曲线有共同的渐近线,四个交点在同一个圆上。