一、数学方差怎么算,方差大小意味着什么

方差公式:

方差大小意味着:每一个变量(观察值)与总体均数之间的差异为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。

总体方差计算公式:

离散型随机变量方差计算公式:D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2;

连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。

扩展资料:

方差的性质:

1、设C是常数,则D(C)=0

2、设X是随机变量,C是常数,则有

3、设 X 与 Y 是两个随机变量,则

其中协方差

特别的,当X,Y是两个不相关的随机变量则,此性质可以推广到有限多个两两不相关的随机变量之和的情况。

二、方差和标准差代表什么

问题一:方差标准差的意义是什么?它们有何特性 1、方差的意义在于反映了一组数据与其平均值的偏离程度;

2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。

3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。

问题二:方差,标准差的概念是什么? 标准差(Standard Deviation)

各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数

标准差是方差的算术平方根。

标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。

标准差也被称为标准偏差,或者实验标准差。

关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。

公式如图。

P.S.

在EXCEL中STDEVP函数就是下面评论所说的另外一种标准差,也就是总体标准差。在繁体中文的一些地方可能叫做“母体标准差”

因弧有两个定义,用在不同的场合:

如是总体,标准差公式根号内除以n,

如是样本,标准差公式根号内除以(n-1),

因为我们大量接触的是样本,所以普遍使用根号内除以(n-1),

问题三:方差,标准差的概念是什么? 方差和标准差是用来描述一组数据的波动性的(集中还是分散)标准差的平方就是方差。

一、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。

二、标准差 ,中文环境中又常称均方差,但不同于均方误差,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的一组数据,标准差未必相同。

注:方差和标准差是测算离散趋势最重要、最常用的指标。

问题四:方差和标准差的公式分别是什么? 40分 方差有两个计算公式:法一: s^2=1/n ×[(x1-x)^2+(x2-x)^2+.......+(xn-x)^2] 前x为数据个数,后x为这组数据的平均数,x1、x2、xn等是每个数据 法二: s^2=1/n ×(x1^2 +x2^2 +...+xn^2) -x^2 标准差是方差的平方根,即:s=√1\x ×[(x1-x)^2+(x2-x)^2+.......+(xn-x)^2].【【不清楚,再问;满意, 请采纳!祝你好运开!!】】

问题五:统计学中的标准差有什么意义? 方差方差和标准差:

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;

样本方差的算术平方根叫做样本标准差。

样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。

定义

设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]厂2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。

由方差的定义可以得到以下常用计算公式:

D(X)=E(X^2)-[E(X)]^2

方差的几个重要性质(设一下各个方差均存在)。

(1)设c是常数,则D(c)=0。

(2)设X是随机变量,c是常数,则有D(cX)=c^2D(X)。

(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。

(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。

标准差 标准差(Standard Deviation)

各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数

标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。 这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。

问题六:标准差和标准偏差是一回事吗?有什么区别? 标准丹(Standard Deviation)

各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数

标准差是方差的算术平方根。

标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

标准偏差(Std Dev,Standard Deviation) - 统计学名词。

一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。

标准偏差公式:S = Sqr(∑(xn-x拨)^2 /(n-1))

公式中∑代表总和,x拨代表x的算术平均值,^2代表二次方,Sqr代表平方根。

所以它们是两回事!

三、方差的大小反映了什么

方差,标准差的大小反映一组数据的离散程度

因此方差,标准差常用来比较数据的离散程度

芳差(标准差)越小说明离散程度越小,数据越稳定

四、教科书在方差的概念后面有一句话方差越大,说明数据的波动越大,越不稳定,这句话是不是可理解为方差越小

方差反映的是所有数据和数据均值(或期望值)的分离程度,所以方差越大,说明各个数据和数据均值的出入就越大,也就是说各个数据之间的差别(或波动)越大,所以越不稳定。反之,方差越小,数据就越稳定。